Ataccama
  • Plateforme
    Enterprise Data Quality Fabric
    Enterprise Data Quality Fabric
    Arrow right
    How It Works
    Aperçu de la plateforme
    Arrow right
    Qualité des données
    Qualité des données

    Contrôles DQ automatisés, surveillance, détection d'anomalies et correction

    Reference Data Management
    Gestion des données de référence

    RDM, création, hiérarchies et synchronisation centralisés

    Master Data Management
    Gestion des données de référence

    Maîtrise multidomaine, intendance, correspondance par IA, fourniture flexible de données

    Intégration de données
    Intégration de données

    Extraction, transformation et fourniture de données flexibles

    Catalogue de données
    Catalogue de données

    Découverte automatisée de données, glossaire métier et marché de données

    Histoires de données
    Histoires de données

    Racontez des histoires attractives avec vos données

    Déploiement
    Options de déploiement Plateforme en tant que service Sur site et hybride Architecture et intégrations
  • Solutions
    Retour
    Concentré sur
    Mettre en œuvre la gouvernance des données

    Une pile d'outils pour démarrer rapidement et pérenniser la gouvernance des données

    Structure de données

    Activez les métadonnées et automatisez le mappage, l'extraction et la fourniture de données

    Gestion des mégadonnées

    Ingérez des données fiables, gérez votre lac de données et traitez les données.

    Vue unique des données

    Établissez une source unique de vérité et créez une vue unique pour tout le monde.

    Voir toutes les solutions industrielles
    De
    Banque, assurance, finance

    Validation des données à la saisie, Customer 360, conformité réglementaire

    Santé

    Patient 360, données fiables pour les tests et DSE, conformité HIPAA

    Vente au détail

    Validation des données à la saisie, Customer 360, enrichissement des données, données de référence

    Gouvernement

    Citizen 360, partage et protection des données, villes intelligentes

    Sciences de la vie

    MDM produit, données propres pour les études cliniques, transparence des dépenses

    Télécoms

    Customer 360, enrichissement des données, suivi d'équipements, confidentialité des données

    Transports

    Surveillance d'équipements, Customer 360, données de référence, confidentialité des données

    Dernière lecture
    Data for Good: Enabling Data-Driven Altruism with Data Governance
    Data for Good: Enabling Data-Driven Altruism with Data Governance

    Using data for helping solve social causes comes with many challenges. How can social organizations use the data efficiently? Learn in this article.

  • Clients
  • Entreprise
    Retour
    Nous contacter
    Planifier un appel Nous contacter S'inscrire à la newsletter Chat en direct
    Entreprise
    À propos de nous

    Tout sur nous, qui nous sommes, notre vision, notre leadership, nos bureaux

    Dossier de presse

    Téléchargez nos actifs de marque, photos et captures d'écran de produits

    Carrières

    #NotYourAverageJob

  • Ressources 1
    Retour
    Ressources

    Vidéos, articles, conseils de nos experts et leaders pédagogiques

    Nouvelles Réussites Blog Livres blancs Webinaires Démos
    Toutes les ressources
    Assistance

    Obtenez des réponses à vos questions techniques

    Documentation Formation Base de connaissances Communauté d'utilisateurs Assistance client
    Événements

    Assistez bientôt à nos événements virtuels en direct et en personne

    Future of Financial Services, Melbourne 2022

    Jul 20

    Innovate VIC 2022

    Jul 21

    Choisi rien que pour vous
    title
    What Is Data Quality and Why Is It Important?

    Learn what data quality is, why it is important, what costs and risks bad data carries, and how you can get started with data quality today for free.

  • Partenaires
    Retour
    Partenaires
    Devenir un partenaire

    Découvrez notre modèle de partenariat, rejoignez-nous

    Portail partenaire Ataccama

    Connectez-vous à notre portail partenaire pour accéder à tous les outils et ressources essentiels.

    Opportunité d'inscription

    Enregistrez le client potentiel et obtenez une récompense partenaire

    Nos partenaires

    Voir nos partenaires technologiques, intégrateurs de systèmes et partenaires de livraison

  • Essayez maintenant
    Retour
    Meeting
    Réserver une réunion

    Discutez de vos besoins et exigences avec l'un de nos représentants commerciaux.

    Outils gratuits
    Profilage Web

    Profilage en un clic dans votre navigateur. Il suffi de déposer un fichier.

    Analyseur de qualité des données

    Outil de profilage avancé. Installez en quelques minutes sur Windows.

    Histoires de données

    Modern data visualization. Present complex facts and wow all stakeholders.

    Voir tous les outils gratuits
  • Contact
Ataccama
Login
Utilisateur
Connexion ou inscription
Contact
Logo with rockets
Announcing
$150 Million Growth Investment
BainCapital logo
Learn more
Blog

5 Reasons Why the Data Catalog and Data Quality Work Better Together

4 minutes read

Two fundamental parts of most data management solutions are the data catalog and data quality tools. The data catalog allows you to locate and keep track of all your data, while data quality tools will ensure it looks and works the way you want it to.

While both of these functionalities can work independently, working cooperatively has many advantages. Namely, the data catalog can lead to better automation of data quality tasks, making them less time-consuming. Read on to learn more about how the data catalog and data quality tools benefit each other.

How a data catalog and data quality work together

The data catalog serves as a central access point connected to all your data sources. Data isn’t stored in the catalog, but it makes it easier to locate, scan, and understand for all authorized users.


One of the best functions of the data catalog is that automated processes and users can assign business terms to data, sorting it into categories and giving it meaning. After that, the AI functionality of the catalog can locate similar data and automatically apply these terms to it. AI can also assign them to the incoming data. 

This is helpful for data quality automation because you can run data quality (DQ) processes on any data with a specific tag instead of manually applying data quality rules to particular data sets. The catalog can automatically apply the necessary rules based on whatever business term you’ve tagged to the data.

For example, let’s say you want to validate email addresses used by different departments. You will assign several rules to the tag “email” in the catalog, and then it will automatically apply it to any data with that tag.

The tags created within the catalog have many advantages for your DQ initiative. It makes the entire process much more scalable and efficient.

#1 Automating data quality monitoring

Suppose, as a data steward responsible for the email data, your use case monitors email data quality issues in every possible business system. It is much easier to do with the catalog because you already have readily available attributes and metadata of interest. Also, without any configuration needed, the data catalog will recognize anomalies, such as unexpected changes in minimum average or sums for transactional data.

Beyond traditional data quality monitoring, the catalog performs all these tasks and presents the data quality metadata. This synergy allows anyone exploring or discovering data in the catalog to see its quality. Data quality information then stays up to date together with metadata.

#2 Improving data discovery

Data quality and the catalog can also work together to help you find the best data sets for your project. You’ll know which sets you need from the business terms applied in the catalog and which are the highest quality from your data quality tool.

Perhaps the best part is that you can assess the quality of data you didn’t even know you had. Since the catalog can automatically apply business terms to data, you can run a DQ evaluation of all data tagged with a specific term and then evaluate data you didn’t tag yourself or maybe didn’t know about.

#3 Streamlining on-demand DQ evaluation

Suppose you need to know the data quality issues of a specific data set that hasn’t been checked before by connecting it to the catalog. In that case, most of this information will already be available. You can click a button and evaluate data quality for any data set.

It also allows you to do these evaluations in one tool instead of bouncing from a profiler to different data storage systems and work with isolated data quality management tools. You can quickly adjust terms and rules and apply them to attributes in the catalog.

#4 Simplifying data preparation

When preparing data without the catalog, you would have to locate all the data and understand it on an attribute-by-attribute basis. The catalog allows you to find data of interest immediately and presents you with the metadata needed to decide what should be prepared and what kind of preparation is necessary. 

You will also be able to work with the data sets that you find and transform them according to your needs. The catalog lets you find the data, evaluate its quality, and prepare it. For example, data profiling from the catalog might reveal that certain emails in your registry have the prefix ":mail:to:" attached. You can then run transformations to remove the prefix.

#5 Helping discover root causes

One of the excellent data catalog tools is root cause analysis through data lineage. Once you integrate data quality into your data lineage, it will tell you information about your data’s quality throughout its lifeline, from its creation to its storage in your system and its eventual use in your business.

You can use data lineage to trace problematic or low-quality data back to its source. Once you find what’s causing the drop in quality, you can take proactive steps to correct it.

Learn more about augmented data lineage in this article.

Conclusion

Syncing data catalogs with data quality tools is essential to any successful data management project. Keeping them connected has numerous benefits, including time savings, reduced risk of errors and data quality issues, and increased data accuracy. Whether it’s DQ monitoring all in one place, making on-demand DQ evaluation easier, finding what data needs preparation, or discovering problematic data sources, it is all much more efficient and smooth when the catalog and DQ work together.

See data catalog and data quality in action

Watch demo
Watch data quality management demo Watch data quality demo

Related articles

How to Get Started with Data Quality: The 3 Steps You Should Take First

How to Get Started with Data Quality: The 3 Steps You Should Take First

Blog
Essential Data Quality Capabilities

Essential Data Quality Capabilities

Blog
What Is Data Quality and Why Is It Important?

What Is Data Quality and Why Is It Important?

Blog
The Evolution and Future of Data Quality

The Evolution and Future of Data Quality

Blog
Data Catalog Fundamentals: Main Principles, Benefits, and Key Features

Data Catalog Fundamentals: Main Principles, Benefits, and Key Features

Blog
Data Catalogs: Accelerating Analytics and Data Quality Operationalization

Data Catalogs: Accelerating Analytics and Data Quality Operationalization

Blog
Privacy Policy Cookie Policy Terms of Use Ethics Hotline
Français
English Deutsche Pусский Français Espanol
© Ataccama 2022
Cookies We value your privacy

We use cookies on our website to enhance your browsing experience. By using our website, you consent to the use of cookies. To understand more how we use cookies or how to change your preference and browser settings, please see our privacy policy.

Select cookies