Ataccama
  • Plattform
    Enterprise Data Quality Fabric
    Enterprise Data Quality Fabric
    Arrow right
    How It Works
    Überblick über die Plattform
    Arrow right
    Datenqualität
    Datenqualität

    Automatisierte DQ-Prüfungen, Überwachung, Anomalieerkennung und Behebung

    Reference Data Management
    Referenzdatenverwaltung

    Zentralisiertes RDM, Authoring, Hierarchien und Synchronisierung

    Master Data Management
    Stammdatenverwaltung

    Multidomain-Mastering, Stewardship, KI-Matching, flexible Datenbereitstellung

    Datenintegration
    Datenintegration

    Flexible Datenextraktion, -transformation und -bereitstellung

    Datenkatalog
    Datenkatalog

    Automatisierte Datenermittlung, Geschäftsglossar und Datenmarktplatz

    Daten-Stories
    Daten-Stories

    Erzählen Sie mit Ihren Daten ansprechende Daten-Stories

    Implementierung
    Implementierungsoptionen Platform-as-a-Service Vor Ort und Hybrid Architektur und Integrationen
  • Lösungen
    Zurück
    Fokussiert auf
    Implementierung der Daten-Governance

    Ein Tool-Stack für den Start einer schnellen und nachhaltigen Data Governance

    Data Fabric

    Aktivieren Sie Metadaten und automatisieren Sie die Datenzuordnung, -extraktion und -bereitstellung

    Big-Data-Management

    Erfassen Sie zuverlässige Daten, steuern Sie Ihren Data Lake und verarbeiten Sie Daten.

    Zentrale Datenübersicht

    Etablieren Sie eine zentrale Quelle der Wahrheit (Single Source of the Truth, SSOT) und erstellen Sie eine einheitliche Übersicht.

    Alle Branchenlösungen anzeigen
    Branche
    Banken, Versicherungen und Finanzwesen

    Datenvalidierung bei Eingabe, Customer 360, Einhaltung gesetzlicher Vorschriften

    Gesundheitswesen

    Patient 360, zuverlässige Daten für Tests und elektronische Gesundheitsakten, HIPAA-Compliance

    Einzelhandel

    Datenvalidierung bei Eingabe, Customer 360, Datenanreicherung, Referenzdaten

    Regierung

    Citizen 360, Datenaustausch und -schutz, Smart Cities

    Biowissenschaften

    Produkt-MDM, bereinigte Daten für klinische Studien, Ausgabentransparenz

    Telekommunikation

    Customer 360, Datenanreicherung, Geräteverfolgung, Datenschutz

    Transportwesen

    Geräteüberwachung, Customer 360, Referenzdaten, Datenschutz

    Aktuelle Lektüre
    Data for Good: Enabling Data-Driven Altruism with Data Governance
    Data for Good: Enabling Data-Driven Altruism with Data Governance

    Using data for helping solve social causes comes with many challenges. How can social organizations use the data efficiently? Learn in this article.

  • Kunden
  • Unternehmen
    Zurück
    Kontaktieren Sie uns
    Telefonat vereinbaren Kontaktieren Sie uns Anmeldung für den Newsletter Live-Chat
    Unternehmen
    Über uns

    Alles über uns, wer wir sind, unsere Vision, Führungsebene und Standorte

    Medien-Kit

    Laden Sie unsere Markenressourcen, Fotos und Produkt-Screenshots herunter

    Karriere

    #NotYourAverageJob

  • Ressourcen 1
    Zurück
    Ressourcen

    Videos, Artikel und Tipps von unseren Experten und Vordenkern

    Neuigkeiten Erfolgsgeschichten Blog Whitepapers Webinare Demos
    Alle Ressourcen
    Support

    Erhalten Sie Antworten auf Ihre technischen Fragen

    Dokumentation Schulung Wissensdatenbank Nutzer-Community Kundenbetreuung
    Veranstaltungen

    Nehmen Sie an unseren bevorstehenden virtuellen und persönlichen Live-Events teil

    Future of Financial Services, Melbourne 2022

    Jul 20

    Innovate VIC 2022

    Jul 21

    Speziell für Sie ausgewählt
    title
    What Is Data Quality and Why Is It Important?

    Learn what data quality is, why it is important, what costs and risks bad data carries, and how you can get started with data quality today for free.

  • Partner
    Zurück
    Partner
    Partner werden

    Lernen Sie unser Partnerschaftsmodell kennen und werden Sie Partner

    Ataccama-Partnerportal

    Melden Sie sich bei unserem Partnerportal an, um auf alle wichtigen Tools und Ressourcen zuzugreifen.

    Vertriebsmöglichkeit registrieren

    Registrieren Sie Kunden und erhalten Sie eine Partnerprämie

    Unsere Partner

    Erfahren Sie mehr über unsere Technologiepartner, Systemintegratoren und Vertriebspartner

  • Jetzt testen
    Zurück
    Meeting
    Meeting vereinbaren

    Lassen Sie sich entsprechend Ihrer Bedürfnisse und Anforderungen von einem unserer Vertriebsmitarbeiter beraten.

    Kostenfreie Tools
    Web-Profiling

    Profiling in Ihrem Browser mit nur einem Klick. Sie müssen lediglich eine Datei ziehen und ablegen.

    Datenqualitätsanalyse

    Fortschrittliches Profiling-Tool. In nur wenigen Minuten unter Windows installieren.

    Daten-Stories

    Modern data visualization. Present complex facts and wow all stakeholders.

    Alle kostenfreien Tools anzeigen
  • Contact
Ataccama
Login
Benutzer
Anmelden oder Registrieren
Contact
Logo with rockets
Announcing
$150 Million Growth Investment
BainCapital logo
Learn more
Blog

What is Data Profiling?

5 minutes read

Data profiling is the first step to any data initiative. It’s a series of checks and analyses undertaken to gain an increased understanding of data.

What exactly is data profiling?

Once you upload your source data, a data profiler generates information about data patterns, numeric statistics, data domains, dependencies, relationships, and anomalies.

Companies can then use this information to evaluate their data sets (or even single columns within the set through column profiling) and proceed with the data initiative at hand. Whether it’s a simple data analysis or something complex like building a data quality program, a data migration, designing or reviewing architecture, or creating a master model (get more detail about these use cases further below).

Anyone can benefit from using a data profiler because it provides essential information about any data set or data source. To better understand this benefit, let’s look at the types of information captured in a data profile.

What information can you get from data profiling?

Some of the critical insights a data profiling task can provide are:

Data Set Overview

This will be an overall summary of information about your data set. The data profile viewer will include the number of records and attributes, the types of data stored there, relationship discovery, how many of each type, etc.

Ataccama data profiling

Basic Data Quality Information

Your profiler will also provide vital information about the quality of data in your set. It will determine quality based on things like a set's completeness (how complete each entry is, if there is a null value, or if there's inaccurate data) and uniqueness (whether or not there are multiple entries for the same data within the set).

Data Formats and Patterns

Data quality enthusiasts know that there are a finite number of formats for postcodes, for example, and that they should be alpha-numeric. Profilers can visualize the different formats and patterns so that you can understand how many values are off.

Frequency Analysis

Profilers generate information about duplicate values within a data attribute, showing you the most common or distinct values.

Data Domains or Custom Data Tags

Advanced data profiling tools detect what kind of data is stored in a data set and label it. For example, you will see which attributes contain emails, PII, credit card data, or address information.

Other features include detecting data dependencies, checking data against a specific business rule, or slicing data (e.g., by gender, zip code, city, etc.), and analyzing profiles of those particular slices.

Why is Data Profiling Important?

It’s hard to understand whether or not a data set is useful or usable without profiling it first. Whatever the use case might be, using data without fully understanding its contents and quality is at best irresponsible.

Despite this, businesses often overlook data profiling because the service is usually packaged within a more comprehensive data quality platform. However, in many data-specific use cases, the relevance and usefulness of data profiling is striking.

Use Cases for Data Profiling

In all of these use cases, data profiling is the first step to secure vital information about a data set before moving on.

  • Starting a data quality or data governance initiative. Data profiling is very often the first step to building a data quality or data governance program. It uncovers various repeating problems in data that lead to data quality issues. It can also help data stewards create a data rule for cleansing and monitoring data and establishing data governance policies.
  • Building a master data model. The benefit of data profiling for master data management is twofold:
    • First, it gives an overview of where the data of interest is located, for example, which systems store customer data.
    • Next, it provides information about inconsistencies in formatting and value, which, if not standardized, would make the data matching process longer and more compute-intense.
  • Performing data migration. Before a data migration project, profiling data lets data stewards correct errors and perform data cleaning before the data is transferred.
  • Evaluation of data suitability and usability. At some point, everyone works with data. Having a tool that gives you an overview of a data set is useful for anyone from digital marketers to rocket scientists.
  • AI and Machine Learning. Data profiling tools are also an important component of preparing data for AI or machine learning.

Data Profiling Tips

Here are several tips for planning and maximizing the efficiency of your data profiling activities: 

  • Separate priorities from the noise. When strategically profiling on a legacy system you can run into massive walls of erroneous data, the question is if you should care. You have to decide which data sets are most important and need their quality addressed first (CDEs).
  • Be careful about the conclusions you draw from profiling. There are different types of data, reference, transactional, master, this will affect the way you should profile and the actions you take afterward. For example, a DQ issue in a transactional dataset could only affect that one particular entry, however, with master data one error could potentially impact thousands of records.
  • Try to narrow down the sets of your profiling as much as possible. If you know that 95% of profit comes from 10% of your sales then you can eliminate large sections of your data you would need to profile. 

Data Profiling Real-World Examples

If you’re still not sure about the importance of data profiling, look at these real-world examples.

Uncovering fraud in a bank

It might sound surprising, but if you know your banking business well, profiling might help you detect fraud. One of Ataccama’s users analyzing data profiling results of several data sets on banking transactions found outliers in the frequency distribution of phone numbers.

After looking more closely into a few of them, she uncovered that each phone number was associated with several clients. Finally, she passed the information to the fraud team, who confirmed several fraudulent transactions and set up measures to prevent this in the future.

Ensuring data usability in the drug development process

Developing new drugs is a data-intensive process. Researchers collect and analyze data on thousands of combinations of compounds and cooperate with external laboratories to speed up the process. This means data is exchanged a lot.

So, when in-house researchers receive data from a cooperating party, they profile it to make sure the formatting is correct, verify the data contents, and check for other potential errors. Data profiling helps researchers only work with reliable, verified data.

Learn more about why data profiling and data management disciplines are important in the pharma industry in this in-depth article.

Data Profiling with Ataccama

As you can see, you don't have to be a data scientist to benefit from data profiling. It is a powerful tool that can be used in various situations by people whose main job is not necessarily analyzing sales data or building predictive models.

Try our free data profiling tools

If you want to get started with data profiling, try our free data profilers, trusted by 60,000+ users.

Start profiling now

Related articles

What Is Data Quality and Why Is It Important?

What Is Data Quality and Why Is It Important?

Blog
Data Catalog Fundamentals: Main Principles, Benefits, and Key Features

Data Catalog Fundamentals: Main Principles, Benefits, and Key Features

Blog
Privacy Policy Cookie Policy Terms of Use Ethics Hotline
Deutsche
English Deutsche Pусский Français Espanol
© Ataccama 2022
Cookies We value your privacy

We use cookies on our website to enhance your browsing experience. By using our website, you consent to the use of cookies. To understand more how we use cookies or how to change your preference and browser settings, please see our privacy policy.

Select cookies