Ataccama
  • Plattform
    Enterprise Data Quality Fabric
    Enterprise Data Quality Fabric
    Arrow right
    How It Works
    Überblick über die Plattform
    Arrow right
    Datenqualität
    Datenqualität

    Automatisierte DQ-Prüfungen, Überwachung, Anomalieerkennung und Behebung

    Reference Data Management
    Referenzdatenverwaltung

    Zentralisiertes RDM, Authoring, Hierarchien und Synchronisierung

    Master Data Management
    Stammdatenverwaltung

    Multidomain-Mastering, Stewardship, KI-Matching, flexible Datenbereitstellung

    Datenintegration
    Datenintegration

    Flexible Datenextraktion, -transformation und -bereitstellung

    Datenkatalog
    Datenkatalog

    Automatisierte Datenermittlung, Geschäftsglossar und Datenmarktplatz

    Daten-Stories
    Daten-Stories

    Erzählen Sie mit Ihren Daten ansprechende Daten-Stories

    Implementierung
    Implementierungsoptionen Platform-as-a-Service Vor Ort und Hybrid Architektur und Integrationen
  • Lösungen
    Zurück
    Fokussiert auf
    Implementierung der Daten-Governance

    Ein Tool-Stack für den Start einer schnellen und nachhaltigen Data Governance

    Data Fabric

    Aktivieren Sie Metadaten und automatisieren Sie die Datenzuordnung, -extraktion und -bereitstellung

    Big-Data-Management

    Erfassen Sie zuverlässige Daten, steuern Sie Ihren Data Lake und verarbeiten Sie Daten.

    Zentrale Datenübersicht

    Etablieren Sie eine zentrale Quelle der Wahrheit (Single Source of the Truth, SSOT) und erstellen Sie eine einheitliche Übersicht.

    Alle Branchenlösungen anzeigen
    Branche
    Banken, Versicherungen und Finanzwesen

    Datenvalidierung bei Eingabe, Customer 360, Einhaltung gesetzlicher Vorschriften

    Gesundheitswesen

    Patient 360, zuverlässige Daten für Tests und elektronische Gesundheitsakten, HIPAA-Compliance

    Einzelhandel

    Datenvalidierung bei Eingabe, Customer 360, Datenanreicherung, Referenzdaten

    Regierung

    Citizen 360, Datenaustausch und -schutz, Smart Cities

    Biowissenschaften

    Produkt-MDM, bereinigte Daten für klinische Studien, Ausgabentransparenz

    Telekommunikation

    Customer 360, Datenanreicherung, Geräteverfolgung, Datenschutz

    Transportwesen

    Geräteüberwachung, Customer 360, Referenzdaten, Datenschutz

    Aktuelle Lektüre
    Ataccama Receives $150 Million Growth Investment from Bain Capital
    Ataccama Receives $150 Million Growth Investment from Bain Capital

    Ataccama receives a $150 million growth investment from Bain Capital Tech Opportunities to enhance R&D and go-to-market, and enable data democratization.

  • Kunden
  • Unternehmen
    Zurück
    Kontaktieren Sie uns
    Telefonat vereinbaren Kontaktieren Sie uns Anmeldung für den Newsletter Live-Chat
    Unternehmen
    Über uns

    Alles über uns, wer wir sind, unsere Vision, Führungsebene und Standorte

    Medien-Kit

    Laden Sie unsere Markenressourcen, Fotos und Produkt-Screenshots herunter

    Karriere

    #NotYourAverageJob

  • Ressourcen 1
    Zurück
    Ressourcen

    Videos, Artikel und Tipps von unseren Experten und Vordenkern

    Neuigkeiten Erfolgsgeschichten Blog Whitepapers Webinare Demos
    Alle Ressourcen
    Support

    Erhalten Sie Antworten auf Ihre technischen Fragen

    Dokumentation Schulung Wissensdatenbank Nutzer-Community Kundenbetreuung
    Veranstaltungen

    Nehmen Sie an unseren bevorstehenden virtuellen und persönlichen Live-Events teil

    Future of Financial Services, Melbourne 2022

    Jul 20

    Innovate VIC 2022

    Jul 21

    Speziell für Sie ausgewählt
    title
    What Is Data Quality and Why Is It Important?

    Learn what data quality is, why it is important, what costs and risks bad data carries, and how you can get started with data quality today for free.

  • Partner
    Zurück
    Partner
    Partner werden

    Lernen Sie unser Partnerschaftsmodell kennen und werden Sie Partner

    Ataccama-Partnerportal

    Melden Sie sich bei unserem Partnerportal an, um auf alle wichtigen Tools und Ressourcen zuzugreifen.

    Vertriebsmöglichkeit registrieren

    Registrieren Sie Kunden und erhalten Sie eine Partnerprämie

    Unsere Partner

    Erfahren Sie mehr über unsere Technologiepartner, Systemintegratoren und Vertriebspartner

  • Jetzt testen
    Zurück
    Meeting
    Meeting vereinbaren

    Lassen Sie sich entsprechend Ihrer Bedürfnisse und Anforderungen von einem unserer Vertriebsmitarbeiter beraten.

    Kostenfreie Tools
    Web-Profiling

    Profiling in Ihrem Browser mit nur einem Klick. Sie müssen lediglich eine Datei ziehen und ablegen.

    Datenqualitätsanalyse

    Fortschrittliches Profiling-Tool. In nur wenigen Minuten unter Windows installieren.

    Daten-Stories

    Modern data visualization. Present complex facts and wow all stakeholders.

    Alle kostenfreien Tools anzeigen
  • Contact
Ataccama
Login
Benutzer
Anmelden oder Registrieren
Contact
Logo with rockets
Announcing
$150 Million Growth Investment
BainCapital logo
Learn more
Blog

Why Pie Charts are Evil 

6 minutes read

Pie charts were probably the second or third graph type your math teacher introduced to you. Maybe they even forced a protractor into your hand so you could get all the angles and percent ratios correct. 

Today, pie, donut, and gauge charts have been exiled from the data analytics and visualization community. Data experts rave about how they are “inadequate,” “bad,” or even “evil.” But why do pie charts have such a bad reputation these days? Let’s find out.

Pie charts take up too much space

Whenever visualizing data, you have limited space to work with. Either in the confines of a PowerPoint slide or as one step in your data story, you have to treat that precious digital real estate with care and fill it with the most value for the viewer/reader. 

The problem with Pie, Donut, and Gauge charts is that they use more space than alternatives that provide the same value (e.g., a bar chart). This is due to two reasons: the nature of their shape and how they depict information. 

  • Pie, Donut, and Gauge charts use area to give value to a single category, whereas bar charts just use distance. 
  • These charts are circular, which creates unnecessary space around the chart object.   

Pie charts aren’t as readable as other chart types

Graphs are useful when a picture of the data makes meaningful relationships visible (patterns, trends, and exceptions) that could not be easily discerned from a table of the same data.

- Stephen Few “Save the Pies for Dessert.”   

When looking at a pie, donut, or gauge chart, it’s difficult to tell how much larger one portion is than another. This is because the human eye and mind are much better at comparing distance instead of area. After all, you only have to assess one dimension instead of two.

For example, if I asked you “how much bigger is ‘Pinot Grigio’ than ‘Tempranillo’ on the chart below, it would be challenging to give an exact answer. 

Source


However, with a bar chart, you might have an easier time finding your answer: ‘Pinot Grigio’ is about 3X larger than ‘Tempranillo.’

Source

People also have trouble with their perception of angles. It’s easier for people to judge the magnitude of a slice when it has nice round 90° angles like 0, 25, 50, 75, and 100%. However, humans can’t easily perceive the differences in angles that fall outside those numbers, and, with no scale, it becomes even more problematic. 

We often overestimate obtuse angles and underestimate acute ones. Even when you have easy-to-read values (like 90°, 180°, 360°), something as simple as rotating the chart can still throw off your perception. 

As you add more segments, this problem gets worse. Pie charts also have problems fitting labels on the graph when there are too many variables, forcing the use of legends and wasting the viewer's time switching their eyes back and forth between the legend and the chart. When the slices get too small, people like to add labels and numeric values to each slice. However, if you’re adding in names and numbers, you might as well be looking at a table. 




Source

Pie Charts can’t convey more information without becoming overly complex

Pie charts don’t allow as wide a range of options for additional data points as bar charts and other types. There are several ways to enrich bar charts with additional data points that don’t make the graph look too crowded or hard to read. You can see this in the bullet chart below, which adds additional values to display targets and ranges. 

Source

However, adding these elements to a pie chart makes it harder to read. The same can be said for 3D renders of pie charts that don’t add additional information. Instead, they will just add complexity and require you to take another dimension into consideration. They will also distort the images, as whichever slice is farther away will look smaller.


Source


Source

Best Alternatives to Pie Charts

In 90% of cases, you can use bar charts instead of pies. They can display almost any information a pie chart can, and they’re easier to read. The only question is, what type of bar chart should you use? Remember that no matter what kind of chart you choose, your decision should be based on: 

  • Your use case
  • The data you want to chart
  • The space you have available 

Many people think that percentages are best displayed on pie charts. However, bar charts are still easier to interpret for this type of data because you only have to assess one dimension. If space is limited and you only have a few values, a stacked chart can also be helpful.

On the other hand, a classic bar chart is an excellent choice when you have a lot of values and want your viewers to make a comparison quickly. 


Source

Some people choose pie charts just to add variety to their presentations. However, using the correct tooling is far more important. For data visualization, the proper tooling is always whatever is easiest to read and interpret.  Better to be understandable than exciting. If anything, having the same type of charts makes your reporting more consistent.

What are pie charts used for? 

While we do find pie charts to be inferior, no rule is written in stone. Pie, donut, and gauge charts can still fulfill a purpose. One example is the use of gauges in cars. 

Some reasons you might choose pie charts are:

  • When there is only one slice of the pie, it’s easier to show its’ share of the whole value. 
  • You have a square (not rectangular) space for visualization
  • Users are used to this chart from past visualizations
  • It’s too complicated to display the information as a bar graph (e.g., analog measuring devices).
  • Data is in %, and only two values are displayed.
    • This allows the user to see data and percentages, and they can quickly reference the dimensions based on 50% 

Tips for using pie charts: 

  • Order sections from smallest to largest starting at the 12 o’clock position
  • Don’t have more than five sections
  • Don’t use them to display change over time
  • Don’t compare pie charts to one another

Data visualization is more than charts

Charts are an excellent means for communicating the message behind your data. However, it’s even better if you can use your charts in the context of a narrative and present them in a way that tells a story. 

Our product, Data Stories, can help. Data stories is a scrollable data visualization tool that connects directly to your data sources to produce engaging presentations. It has 20+ chart options to choose from (including pie charts) and can also generate conclusions using AI insights. Try it out here! 

Start telling stories with data today

Ataccama Data Stories are free.
10 public stories • 10 datasets • 10 million data rows

Start telling data stories

Related articles

How to Tell Stories with Data: 5 Steps to Make it Work

How to Tell Stories with Data: 5 Steps to Make it Work

Blog
Ataccama Innovate 2022 Conference on Demand

Ataccama Innovate 2022 Conference on Demand

Conference
Privacy Policy Cookie Policy Terms of Use Ethics Hotline
Deutsche
English Deutsche Pусский Français Espanol
© Ataccama 2022
Cookies We value your privacy

We use cookies on our website to enhance your browsing experience. By using our website, you consent to the use of cookies. To understand more how we use cookies or how to change your preference and browser settings, please see our privacy policy.

Select cookies