Ataccama
  • Plattform
    Enterprise Data Quality Fabric
    Enterprise Data Quality Fabric
    Arrow right
    How It Works
    Überblick über die Plattform
    Arrow right
    Datenqualität
    Datenqualität

    Automatisierte DQ-Prüfungen, Überwachung, Anomalieerkennung und Behebung

    Reference Data Management
    Referenzdatenverwaltung

    Zentralisiertes RDM, Authoring, Hierarchien und Synchronisierung

    Master Data Management
    Stammdatenverwaltung

    Multidomain-Mastering, Stewardship, KI-Matching, flexible Datenbereitstellung

    Datenintegration
    Datenintegration

    Flexible Datenextraktion, -transformation und -bereitstellung

    Datenkatalog
    Datenkatalog

    Automatisierte Datenermittlung, Geschäftsglossar und Datenmarktplatz

    Daten-Stories
    Daten-Stories

    Erzählen Sie mit Ihren Daten ansprechende Daten-Stories

    Implementierung
    Implementierungsoptionen Platform-as-a-Service Vor Ort und Hybrid Architektur und Integrationen
  • Lösungen
    Zurück
    Fokussiert auf
    Implementierung der Daten-Governance

    Ein Tool-Stack für den Start einer schnellen und nachhaltigen Data Governance

    Data Fabric

    Aktivieren Sie Metadaten und automatisieren Sie die Datenzuordnung, -extraktion und -bereitstellung

    Big-Data-Management

    Erfassen Sie zuverlässige Daten, steuern Sie Ihren Data Lake und verarbeiten Sie Daten.

    Zentrale Datenübersicht

    Etablieren Sie eine zentrale Quelle der Wahrheit (Single Source of the Truth, SSOT) und erstellen Sie eine einheitliche Übersicht.

    Alle Branchenlösungen anzeigen
    Branche
    Banken, Versicherungen und Finanzwesen

    Datenvalidierung bei Eingabe, Customer 360, Einhaltung gesetzlicher Vorschriften

    Gesundheitswesen

    Patient 360, zuverlässige Daten für Tests und elektronische Gesundheitsakten, HIPAA-Compliance

    Einzelhandel

    Datenvalidierung bei Eingabe, Customer 360, Datenanreicherung, Referenzdaten

    Regierung

    Citizen 360, Datenaustausch und -schutz, Smart Cities

    Biowissenschaften

    Produkt-MDM, bereinigte Daten für klinische Studien, Ausgabentransparenz

    Telekommunikation

    Customer 360, Datenanreicherung, Geräteverfolgung, Datenschutz

    Transportwesen

    Geräteüberwachung, Customer 360, Referenzdaten, Datenschutz

    Aktuelle Lektüre
    Ataccama Receives $150 Million Growth Investment from Bain Capital
    Ataccama Receives $150 Million Growth Investment from Bain Capital

    Ataccama receives a $150 million growth investment from Bain Capital Tech Opportunities to enhance R&D and go-to-market, and enable data democratization.

  • Kunden
  • Unternehmen
    Zurück
    Kontaktieren Sie uns
    Telefonat vereinbaren Kontaktieren Sie uns Anmeldung für den Newsletter Live-Chat
    Unternehmen
    Über uns

    Alles über uns, wer wir sind, unsere Vision, Führungsebene und Standorte

    Medien-Kit

    Laden Sie unsere Markenressourcen, Fotos und Produkt-Screenshots herunter

    Karriere

    #NotYourAverageJob

  • Ressourcen 1
    Zurück
    Ressourcen

    Videos, Artikel und Tipps von unseren Experten und Vordenkern

    Neuigkeiten Erfolgsgeschichten Blog Whitepapers Webinare Demos
    Alle Ressourcen
    Support

    Erhalten Sie Antworten auf Ihre technischen Fragen

    Dokumentation Schulung Wissensdatenbank Nutzer-Community Kundenbetreuung
    Veranstaltungen

    Nehmen Sie an unseren bevorstehenden virtuellen und persönlichen Live-Events teil

    Future of Financial Services, Melbourne 2022

    Jul 20

    Innovate VIC 2022

    Jul 21

    Speziell für Sie ausgewählt
    title
    What Is Data Quality and Why Is It Important?

    Learn what data quality is, why it is important, what costs and risks bad data carries, and how you can get started with data quality today for free.

  • Partner
    Zurück
    Partner
    Partner werden

    Lernen Sie unser Partnerschaftsmodell kennen und werden Sie Partner

    Ataccama-Partnerportal

    Melden Sie sich bei unserem Partnerportal an, um auf alle wichtigen Tools und Ressourcen zuzugreifen.

    Vertriebsmöglichkeit registrieren

    Registrieren Sie Kunden und erhalten Sie eine Partnerprämie

    Unsere Partner

    Erfahren Sie mehr über unsere Technologiepartner, Systemintegratoren und Vertriebspartner

  • Jetzt testen
    Zurück
    Meeting
    Meeting vereinbaren

    Lassen Sie sich entsprechend Ihrer Bedürfnisse und Anforderungen von einem unserer Vertriebsmitarbeiter beraten.

    Kostenfreie Tools
    Web-Profiling

    Profiling in Ihrem Browser mit nur einem Klick. Sie müssen lediglich eine Datei ziehen und ablegen.

    Datenqualitätsanalyse

    Fortschrittliches Profiling-Tool. In nur wenigen Minuten unter Windows installieren.

    Daten-Stories

    Modern data visualization. Present complex facts and wow all stakeholders.

    Alle kostenfreien Tools anzeigen
  • Contact
Ataccama
Login
Benutzer
Anmelden oder Registrieren
Contact
Logo with rockets
Announcing
$150 Million Growth Investment
BainCapital logo
Learn more
Blog

5 Reasons Why the Data Catalog and Data Quality Work Better Together

4 minutes read

Two fundamental parts of most data management solutions are the data catalog and data quality tools. The data catalog allows you to locate and keep track of all your data, while data quality tools will ensure it looks and works the way you want it to.

While both of these functionalities can work independently, working cooperatively has many advantages. Namely, the data catalog can lead to better automation of data quality tasks, making them less time-consuming. Read on to learn more about how the data catalog and data quality tools benefit each other.

How a data catalog and data quality work together

The data catalog serves as a central access point connected to all your data sources. Data isn’t stored in the catalog, but it makes it easier to locate, scan, and understand for all authorized users.


One of the best functions of the data catalog is that automated processes and users can assign business terms to data, sorting it into categories and giving it meaning. After that, the AI functionality of the catalog can locate similar data and automatically apply these terms to it. AI can also assign them to the incoming data. 

This is helpful for data quality automation because you can run data quality (DQ) processes on any data with a specific tag instead of manually applying data quality rules to particular data sets. The catalog can automatically apply the necessary rules based on whatever business term you’ve tagged to the data.

For example, let’s say you want to validate email addresses used by different departments. You will assign several rules to the tag “email” in the catalog, and then it will automatically apply it to any data with that tag.

The tags created within the catalog have many advantages for your DQ initiative. It makes the entire process much more scalable and efficient.

#1 Automating data quality monitoring

Suppose, as a data steward responsible for the email data, your use case monitors email data quality issues in every possible business system. It is much easier to do with the catalog because you already have readily available attributes and metadata of interest. Also, without any configuration needed, the data catalog will recognize anomalies, such as unexpected changes in minimum average or sums for transactional data.

Beyond traditional data quality monitoring, the catalog performs all these tasks and presents the data quality metadata. This synergy allows anyone exploring or discovering data in the catalog to see its quality. Data quality information then stays up to date together with metadata.

#2 Improving data discovery

Data quality and the catalog can also work together to help you find the best data sets for your project. You’ll know which sets you need from the business terms applied in the catalog and which are the highest quality from your data quality tool.

Perhaps the best part is that you can assess the quality of data you didn’t even know you had. Since the catalog can automatically apply business terms to data, you can run a DQ evaluation of all data tagged with a specific term and then evaluate data you didn’t tag yourself or maybe didn’t know about.

#3 Streamlining on-demand DQ evaluation

Suppose you need to know the data quality issues of a specific data set that hasn’t been checked before by connecting it to the catalog. In that case, most of this information will already be available. You can click a button and evaluate data quality for any data set.

It also allows you to do these evaluations in one tool instead of bouncing from a profiler to different data storage systems and work with isolated data quality management tools. You can quickly adjust terms and rules and apply them to attributes in the catalog.

#4 Simplifying data preparation

When preparing data without the catalog, you would have to locate all the data and understand it on an attribute-by-attribute basis. The catalog allows you to find data of interest immediately and presents you with the metadata needed to decide what should be prepared and what kind of preparation is necessary. 

You will also be able to work with the data sets that you find and transform them according to your needs. The catalog lets you find the data, evaluate its quality, and prepare it. For example, data profiling from the catalog might reveal that certain emails in your registry have the prefix ":mail:to:" attached. You can then run transformations to remove the prefix.

#5 Helping discover root causes

One of the excellent data catalog tools is root cause analysis through data lineage. Once you integrate data quality into your data lineage, it will tell you information about your data’s quality throughout its lifeline, from its creation to its storage in your system and its eventual use in your business.

You can use data lineage to trace problematic or low-quality data back to its source. Once you find what’s causing the drop in quality, you can take proactive steps to correct it.

Learn more about augmented data lineage in this article.

Conclusion

Syncing data catalogs with data quality tools is essential to any successful data management project. Keeping them connected has numerous benefits, including time savings, reduced risk of errors and data quality issues, and increased data accuracy. Whether it’s DQ monitoring all in one place, making on-demand DQ evaluation easier, finding what data needs preparation, or discovering problematic data sources, it is all much more efficient and smooth when the catalog and DQ work together.

See data catalog and data quality in action

Watch demo
Watch data quality management demo Watch data quality demo

Related articles

How to Get Started with Data Quality: The 3 Steps You Should Take First

How to Get Started with Data Quality: The 3 Steps You Should Take First

Blog
Essential Data Quality Capabilities

Essential Data Quality Capabilities

Blog
What Is Data Quality and Why Is It Important?

What Is Data Quality and Why Is It Important?

Blog
The Evolution and Future of Data Quality

The Evolution and Future of Data Quality

Blog
Data Catalog Fundamentals: Main Principles, Benefits, and Key Features

Data Catalog Fundamentals: Main Principles, Benefits, and Key Features

Blog
Data Catalogs: Accelerating Analytics and Data Quality Operationalization

Data Catalogs: Accelerating Analytics and Data Quality Operationalization

Blog
Privacy Policy Cookie Policy Terms of Use Ethics Hotline
Deutsche
English Deutsche Pусский Français Espanol
© Ataccama 2022
Cookies We value your privacy

We use cookies on our website to enhance your browsing experience. By using our website, you consent to the use of cookies. To understand more how we use cookies or how to change your preference and browser settings, please see our privacy policy.

Select cookies